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- SUMMARY

A scaled, single-stage, highly-loaded, axial-flow transonic

compressor was tested at speeds from 70 to 110 percent of design

equivalent speed to evaluate the effects of scaling to a small

size, and the individual and combined effects of rotor running
clearance, and rotor shroud casing treatment, on the overall and

blade element performance. !

This compressou stage, essentially a 0.1445 scale (approx-

imately 50:1 flow 3cale) of tne _tage designed and tested undgr _.
NASA Contract NAS3-10_I: was predicted to operate at a flow

! rate of 1.662 kg/s_c (3.663 ib/sec), pressure ratio of 1.837 and

stage adiabatic efficiency of 82.6 percent at a corrected speed
of 76,718 rpm.

7

At design speed, with smooth outer shroud and close _anning
clearance of 0.020 cm (0.008 in.), the stage obtained an effi-

ciency of 83.2 percent at a flow rate 9b.4 percent of design and
a pressure ratio of 1.865. At this close running clearance,

casing treatment increased the design speed surge margin to 12.8

percent from the 10.8 percent obtained with the untreated _asing.
Overall performance was essentially unchanged.

" An increase of rotor running clearance to 0.056 cm

(0.022 in.)_ith the smooth casing, reduced design speed peak

efficiency by 5.7 points, flow by 7.4 percent, and pressure ratio
to 1.74. Design speed suzge margin was similarly reduced to 5.4

percent. Reinstalling the casing treatment at this large running
clearance regained 3.5 points in design speed peak efficiency,

4.7 percent i., flow, increased pressure ratio to 1.8, and surge

margln to 8.7 percent.

This test series clearly indicates performance pen.lties i

associated with scaling to small size, especially with large run-

ning clearances over a _mall transonic rotor. But moreover, it i o

demonstrated that a large portion of the performance lost, due to

increased tip clearance, can be regained with casing treatment.

i This volume, the first of two, present_ details of the test

equipment, test procedures, data reduction methods, overal_ per-
formance data, and blade element data plots. Plots ef total

pressure profiles in the casing endwall boundary layers at the
rotor inlet, rotor exit, and downstream of the 8tator are _iso

presented. Volume II contains tabulations _f all overall _rfor-
mance and blade element data.
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INTRODUCTION

Small, single-stage, axial compressors for use in small gas

turbines are of increasing importance in military and civil ap-

lications as primary propulsion units for helicopters, light air-

craft, tanks, and trucks, and as auxiliary power units for larger
aircraft. The present body of design rules for loss, incidence,

deviation, aspect ratio, and solidity has been developed as a re-

sult of extez.sive research and development efforts over the years

on large size components. To utilize this knowledge effectively

when dealing with small components, the compromises required as a _ _

result of scaling, and effects of scaling, must be identified. _"
These compromises result from the inability to scale dimensions

such as leading and trailing edge radii directly, and from the

fact that tolerances cannot be scaled directly while m_intaining !
low costs. These considerations introduce an element of uncer-

tainty in performance predictions for small stage_. Therefore,

. the n_nner in which attractive larger stages are scaled is impor-
tant.

Rotor casing treatment has produced beneficial results in

improving the operational flow range of large axial-flow compres-
sors. Results presented in Reference 1 indicate that a signi-
ficant improvement in rotor stall margin was obtained when a por- T

ous casing was present over the rotor blade tip region. This

improvement, during testing of a rotor only configuration, was
most pronounced when the rotor was tested with inlet flow distor-

tion. Further research, under a NASA contract, evaluated the

effects of a porous honeycomb casing over the rotor tip of a
moderately loaded transonic stage, both with and without radial

inlet distortion. These results, presented in Reference 2, again

indicated an improvement in stall margin with the porous honeycomb

casing relative to that obtained with a conventional solid casing.

However, losses of five points in peak rotor efficiency at design
speed were sustained for the improvement in surge margin. Addi-

tional evaluations of this concept, i.e., casing treatment, such

as skewed slots and blade angle grooves (References 3 and _) in-

_ dicated improvement in operating flow range, both with and with-
put inlet flow distortion. However, in most cases there was an i :

: accompanying loss in rotor and stage efficiency. One configura-

tion (Reference 4) indicated an improvement in stall margin with- i
out a significant performance penalty. A screening program was

t initiated to evaluate use of circumferential grooves in the

casing. R_sults of that study, presented in Reference 5, indi-

cated the greatest improvement in surge margin was found among
the configurations utilizing circumferential grooves. This was

obtained with the grooves over the rotor blade tip mid-chord

region only, and was accomplished without a decrease in stage
efficiency.

I • rECINQ PAGEBLANKNOT¥tIJ
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To increase the understanding of scaling methodologies, and

to evaluate the potential of casing treatment to provide benefits

similar to those already demonstrated in large compressors, a

modified scale of the high-tip-speed compressor reported in
References 6 and 7 was selected for testing.

This report presents test results demonstrating the effects i
of scaling compromises and the effectiveness of casing treatment,

especially in the presence of large running clearance over the

rotor and compares these results to performance achieved in the i
larger size component. Complete tabulations of all test data i

a:_d computed performance parameters are presented in Reference 8. i
Definition of symbols and performance parameters used in this re-

port appear in Appendix A, and the procedure used for momentum

averaging of data is described in Appendix B. i

4

i
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APPARATUS AND PROCEDURES

Aerodynamic Design

An existing AiResearch axial-flow compressor rotor was

selected for this investigation. This compressor rotor is of a

high-tip-speed, high-pressure-xatio design with relatively high

specific-flow; typical of the compressor type that would be se-
lected for advanced, small engine concepts. The compressor stage,

essentially a 0.1445 scale of the stage designed and tested under
NASA Contract NAS3-10482 and reported in References 6 and 7, was

designed to operate at a flow rate of 1.662 kg/sec (3.663 ib/sec),

a pressure ratio of 1.837, and a stage adiabatic efficiency of <
82.6 percent at a corrected speed of 76,718 rpm.

\

Application constraints made it necessary to alter the orig-
: inal stage design when scaled to the small flow size. At engine

design speed and total pressure ratio, the flow scaled from the

; tested stage map of Reference 7 was greater than required. Suf-

ficient detailed data was available from Reference 6 to identify

- a three percent flow streamline measured from the casing. This
streamline was selected as the casing line for the stage. The

rotor tip diameter was reduced to this dimension. Radial loca-

tion of the design stator sections was defined by locating the

scaled stator hub section at the hub radius, while moving the
scaled stator casing section inward to the three percent flow

streamline. All intermediate sections were proportionately

_ spaced between the resulting hub and casing sections.

: Blade definition. - Certain manufacturing compromises pre-
cluded a direct scale of blade dimensions in proportion to

/ scal_ng ratios. The scaled rotor chord was increased 25 percent
over a direct scale to obtain more practical dimensions for man-

ufacturing. This rotor chord increase was accommodated by a

decrease in the number of blades to maintain the same solidity.

Therefore, a 25-percent reduction in blade aspect ratio resulted.
,/
%

An examination of directly scaled leading- and trailing-

i edge thicknesses indicated that an unreasonably small thickness

would result on some rotor blade sections; especially in the tip

region. Therefore, each blade section was individually examined
and a reasonable edge thickness determined. Table I summarizes

the scaled and modified blade edge dimensions.

The leading-edge thickness alteration was applied to the

pressure surface, while the trailing-edge thickness alteration

was distributed on both the pressure and suction surfaces. Both
surfaces were faired to the scaled blade section in a manner con-

sistent with minimum chord-wise change and maintenance of mono-

tonically changing surface curvature. The maximum thickness and

. applicable location were retained. _

5
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TABLE I

ROTOR EDGE THICKNESS

Hub Tip Remarks

Leading Edge Trailing Edge Leading Edge Trailing Edge

0.0925 cm 0.1052 cm 0.0615 cm 0.0320 cm Original Config-
(0.0364 in.) (0.0414 in.) (0.0242 in.) (0.0126 in.) uration

(Reference 6)

0.0135 cm 0.0152 cm 0.0089 cm 0.0_46 ._n Exact scale to

: (0.0053 in.) (0.0060 in.) (0.0035 in.) (0.0018 in.) 0.1445 size

i i HI i,

0.0168 cm 0.0191 cm 0.0112 cm 0.0058 cm Exact scale ad-

(0.0066 in.) (0.0075 in.) (0.0044 in.) (0.0023 in.) justed for 25

percent chord
increase

0.0168 cm 0.0191 cm 0.0127 cm 0.0127 cm Modified for

(0.0066 in.) (0.0075 in.) (0.0050 in.) (0.0050 in.) manufacturing
i

6
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An optical comparison at 10 times size was made between the

finished rotor and design configuration. Figure 1 presents re-
sults of such a comparison near mid-span for a sample blade on

the finished rotor. A similar inspection of several additional

blades indicated that the quality of all blades was represented
by the sample. Figure 2 presents a view of the finished rotor
from the inlet side.

The scaled stator chord and thickness were increased by 47

percent o_er a direct scale of the Reference 6 stator to again
obtain more practical dimensions for manufacture. This stator

chord increase was accompanied by a decrease in the number of

vanes from 44 to 30 to maintain the same solidity as the refer-

ence design. These changes resulted in a 47-_ercent reduction

in stator aspect ratio.

A sample optical inspection for a typical stator vane near

mid-span is shown in Figure 3. As noted, the leading edge region

was thicker than design, and a hand finish operation utilizing
an electro-optical comparator was employed to correct this.condi-

tion. The final stator assembly had a leading edge region within

acceptable tolerances. A view looking aft of the finished stat0r
assembly is shown in Figure 4.

Flow path definition. - The 25-percent increase in rotor
chord required a 25-percent increase in blade axial projection.
At the end ,_alls, this was accommodated by axially shifting, at

constant radius, points on the surfaces of revolution 25 percent

_ away from a base point, i.e., the rotor trailing-edge/hub inter-
section. The resulting surface slopes and curvatures were less

than initial values. Similar minor flow-path alte:ations were

i undertaken to accommodate the stator chord increase_ however,
axial space between the rotor and stator was retained at the

scaled dimension. Reductions in hub-wall slope and c vature and
retention of the scaled axial space made it inconvenient to retain

i the exact st_tor leading-edge/hub-wall intersection point. It

! was judge_ that a small reduction in hub radius at the stator

leading-edge would not substantially alter the flow field. The

i resul_ing meridional flow path and exact scale are presented in

Figure 5 for comparison.

i An axial inlet designed for the Reference 6 axial compressor

I was representative of aircraft power plant usage, where higher
values of inlet flow per unit frontal area are more desirable be-

i cause of weight and envelope considerations. In the size range
being investigated in this program, this requirement was not

para,:,ount. Therefore, an axial-flow-compressor radial inlet was

judged more representative of that which could be expected when

gas turbine engine of this small size is used in an application

where accessibility is given priority. To ensure that the flow

conditions into the rotor were not distorted by the change from

<

7
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axial to radial inlet, an analytical model was established and

an appropriate inlet shape designed to minimize wall boundary-

layer thickness and duplicate the inlet velocity gradients that
existed for t_.e original compressor.

Table II presents a summary of pertinent aerodynamic and

geometric parameters for this design.

Velocit_ diagrams. - Once the scaling approach was determined,
the meridien_l flowpath and recomputed blade geometry parameters

were integrated into an axisymmetric compressible-flow analysis "

program. The stage geometry, together with radial variations of
rotor exit total pressure and total temperature, as given in

Reference 7 for the stage test near design point operating con-

ditions, were input to this program to define the design rotor

blade edge velocity diagrams and rotor blade element performance.

Stator velocity diagrams were similarly determined by using the
measured stator loss coefficients presented in Reference 7. These

computed velocity diagrams served as a basis for subsequent com-

parison with experimental data and are indicated as design values

on subsequent figures. The design blade element parameters are
listed in Figures 6 and 7 for the rotor and Figures 8 and 9 for
the stator. All values are referenced to NASA sea level standard

day conditions as defined in Appendix A.

The level of agreement between the synthesized design blade
element parameters and test data from Reference 7 is indicated

in Figures 10 through 14. Rotor and stator diffusion factors are

compared to test data in Figure 10. The rotor and stator inci-

dence and deviation angles are similarly compared in Figures ii

: through 14. The radial variation of rotor and stage efficiency
are compared to Reference 7 test data in Figures 15 and 16,

respectively. These comparisons provide a good replica of the

original compressor demonstrated performance into the present
small compressor design intent.

8
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• TABLE II

ROTOR
t_

(24 BLADES)

_ Average

_ Streamline Blade Streamline Slope i "
Radius Solidity Camber Inlet Exit

cm in. (Deg.) (Deg.) (Deg) ie

3.277 1.290 2.350 53.7 14.98 14.98 _

_ 3.637 1.432 2.120 42 3 9 4 i0 4

:;_ 4.232 1.666 1.825 22.5 1.5 4.4

4.732 1.863 1.633 14.04 - 4.6 - 0.6 :

5.184 2.041 1.491 8.95 -11.0 - 6.4

5. 639 2. 220 1.371 6.94 -14.7 -12.0

5.885 2. 317 1.314 6.2 -14.58 -14.58

Tip Rotor Rotor

Radius Inlet Exit
u u ",

cm 5.999 5.770

in. 2.362 2.272

Hub
_ Radius

cm 3.035 3. 518

_ in 1.195 1 385

_ Rotor Inlet Hub-Tip Ratio = 0.506

_ 9
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TABLE II (Contd)

STATOR

(30 VANES)

Average
Streamline Vane Streamline Slope --

Radius Sol idity Camber Inlet Exit

cm in. (Deg.) (Deg.) (Deg.)

3.744 1.474 2.067 57.7 13.5 0.0

3.957 1.558 1.952 53.25 9.4 4.9
i ,| ,l

4.359 1.716 1.774 50.5 4.9 1.9

4.717 1.857 1.639 49.48 2.2 2.6

5.050 1.988 1.580 49.83 - 0.3 1.7
l ,m, ,

5.395 2.124 1.432 52.95 - 3.3 0.9

5.583 2.198 1.388 58.14 - 8.5 0.0

Tip Stator Stator

Radius Inlet Exit
, i

cm 5.603 5.563

in. 2.206 2.190

Hub

Radius

cm 3.625 3.862

in. 1.427 1.521

.... Stator Inlet Hub-Tip Ratio = 0.64?
i L
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Compressor Test Rig

The test vehicle was capable of achieving speeds up to and
including 85,000 rpm, approximately 112 Fercent of design equiv-
alent speed. As shown in Figure 17, the test vehiole design

incorporated a radial inlet, rotor, stator, and a constant-area

discharge section followed by an annular diffuser.

To facilitate test-vehicle configuration changes, removablu

! casing inserts were designed. The solid casing incorporated an

abradable plasma coating extending over the blade tip. Grooves

were assembled into the casing treatment hazdware. The casing

had five grooves extending over the mid 60-percent of the blade-
tip projected chord. A land-to-groove width ratio of approxi-

mately 1:3 was selected. The grooved casing geometry details are

shown in Figure 18. This configuration was a reasonable geometric
scale of configuration (f), Figure 3, of Reference 5 [I], and was

selected because performance improvements had been demonstrated

at 70 and 100 percent speed. The grooved casing prior to instal-

! lation is shown in Figure 19.

Instrumentation. - Aerodynamic evaluation of overall perfor-

mance, rotor performance, blade element data, and stator vane
element data required the use of small, highly accurate sensing

elements and utilized a computer-controlled data-acquisition sys-
tem. Desion, selection, and distribution of both fixed and tra-

versable instrumentation were carefully controlled to provide the
necessary accuracy while minimizing blockage effects. Circumfer-

ential location and identity of instrumentation are shown in

Figures 20 and 21 for the shroud and hub, respectively. A test

flowpath schematic identifying the location of the instrumentation

stations is provided in Figure 22. A summary of these stations
is listed below.

Station Number Location

0 Inlet bellmouth

0.9 Rotor shroud boundary layer survey
plane

1 Rotor inlet

I. 5 Rotor shroud

2 Rotor exit

3 Stator inlet

4 Stator exit !

4.5 Blade element survey plane i
5 Stage discharge

i

i

ll i
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Airflow was measured using a standard ASME long radius

9.525 cm (3.750 in.) diameter bellmouth for 70 percent design
equivalent speed and a 14.745 cm (5.805 in.) diameter bellmouth

for all higher speeds. These calibrated bellmouths, in con3unc-

tion with a 0.25 percent full-scale accuracy low-pressure trans-

ducer insured airflow measurement accuracy to within one percent

during all compressor mapping.

Compressor speed was monitored using an electromagnetic pick-
up. Measurement of speeds between 40,000 and 85,000 rpm was

accurate within +10 rpm. -_

Inlet total temperature was measured at the compressor inlet

(Station 0) by eight chromel-alumel thermocouples. Stage dis-
charge total temperatures (Station 5) were measured with four

fixed radial rakes using shielded high-recovery thermocouples.

These five-element rakes, shown in Figure 23, were circ_mferen-

tially located to obtain readings evenly distributed across a

stator vane passage and radially positioned at the design loca-
tion of i0, 30, 50, 70, and 90 percent streamlines. Both inlet

and discharge fixed thermocouples were constructed with stainless

steel sheathed chromel-alumel wire of 0.051 cm (0.020 in.) outer
diameter. The internal thermocouple wires were 0.006 cm (0.0025

in.) diameter, insulated from each other and the outer sheath

with magnesium oxide. All thermocouple junctions were calibrated

against a standard reference at two points within the affected

range. Overall rms temperature accuracy was estimated at +l

degree.

Blade-element temperature data was obtained by using an ll-
element, radially-traversable wake rake located at Station 4.5

and shown in Figure 24. Thermocouple elements were made of

0.0025 cm (0.001 in.) chromel-alumel wire, with magnesium oxide
insulation and stainless steel sheaths having an outside diameter
of 0.025 cm (0.010 in.). These ll elements were shielded and

circumferentially positioned to cover in excess of one stator

passage.

In conjunctio,- with the temperature wake rake, a similar ll-

element pressure wake rake was utilized to obtain blade element

pressure data. This wake rake was constructed of 0.071 cm

(0.028 in.) OD tubing with 0.015 cm (0.00& in.) wall thickness
and internally chamfered edges. Calibration of the rake over a

range of Mach n_t_ers indicated that negligible correction was

required over the performance mapping range. As shown in Figure
25, the wake rake stem was streamlined and swept in the aft

direction to minimize blockage effects.

12
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These two circumferential wake rakes, plus a stator

discharge angle sensing cobra probe, shown in Figure 26, radially

traversed the stator discharge passage. An incremental stepping

system immersed the probes to discrete radial positions, corres-

ponding to design location of the i0, 20, 30, 50, 70, and 90

percent flow streamlines measured from the casing. Stepping sys-
tem calibration, using the digital computer data acquisition sys-

tem, indicated repeatable positioning of probes within +0.3 per-
cent of the radii being considered.

Stage discharge total pressure measurements were obtained at

Station 5 with four circumferentially positioned radial pressure

rakes. These five-element rakes, shown in Figure 23, were iden-

tical in radial positioning and circumferential indexing to the
fixed temperature rakes previously described. g

Traversable survey probes, utilized in obtaining rotor inlet
and rotor exit boundary layer data, are shown in Figure 27.

Again, these probes were selected over fixed instrumentation
methods to minimize blockage. The two probes differed in one

• respect; the rotor inlet probe was internally chamfered to reduce

pitch and yaw sensitivity, whereas, the rotor exit probe was ex _
ternally chamfered to increase pitch and yaw sensitivity. This

configuration was selected to enable determination of rotor exit

total pressure while minimizing blockage associated with a large,
automatically nulled, probe. During data acquisition, the rotor |

exit probe was immersed and manually rotated until maximum pres-
sure was located. The locus of maximum pressure was then assumed

to be the boundary layer profile.

Boundary layer data at the stator exit was obtained using

the previously described cobra probe. The side port static pres-

sures were allowed to balance prior to data recording.

Static pressu_:e taps were located on the hub and shroud sur-

faces along the flowpath, and at the leading and trailing edges
of blade rows as shown in Figures 20 and 21.

All probe, rake, and static tap pressures were recorded
digitally through 48 port scannivalves utilizing a transducer

appropriate for the range of pressures being recorded. These

transducers had an accuracy of 0.25 percent of full scale. A

series of calibration pressures, compatible with each transducer,
were recorded duzing each data scan from ports reserved on the

scannivalve unit for this purpose. The positive reference cali-

bration pressures were maintained by utilizing deadweight

precision-pressure standards. The pressure reading combined

accuracy from the digital data acquisition system was estimated

at +0.5 percent of full scale value. However, utilisation of

standard reference pressures in the data reduction program to
calibrate each transducer for each data scan reduaed the ultimate

13
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inaccuracy in pressure measurement to approximately +0.I percent
of value.

Audible detection of comDressor instability was facilitated
by using a high response inlet microphone upstream of the rotor
inlet station. Visual and permanent recordings of surge were ob-
tained by using a bare-wire thermocouple located immediately for-
ward of the rotor leading edge. The thermocouple was placed at
10-percent of the rotor inlet span, measured from the casing.
Thermocouple output was recorded on an eight-_hannel recorder to
indicate the presence of reverse flow.

All aerodynamic and mechanical instrumentation was recorded
on a digital computer. Critical performance parameters, such as i
pressure and temperature, were sampled at a rate of 200 times
per second; and the final recorded value of each parameter was
obtained by averaging 16 successive samplings. This procedure
reduced the error potential due to random electrical signal
noise. On-line cathode-ray-tubes were located at the test con-
sole and provided a display of selected raw data and computed
performance parameters. Thus, by utilizing the CRT, which was

: updated every 30 seconds, test conditions were monitored contin-
: uously during testing.

Four calibrated, capacitance type, clearance probes were in-
stalled in the solid casing over the rotor midchord at four
equally spaced circumferential locations. These probes were
flush mounted in the casing, and contoured to maintain the de-
sired casing surface shape. The system was calibrated using the
actual rotor and casing in a rotating bench fixture. The clear-
ance measuring system accuracy is approximatel_ _i0 percent of
the clearance recorded. Clearance measurements were not made
during casing treatment tests. However, since casing shape was
identical for both the solid casing and casin_ treatment hard-
ware, and each part occupied the same axial position in the ve-
hicle, it was judged (and later verified) that the rotating group

axial stacking could vary by +0.0127 cm (0.005 in.), which was .equivalent to +0.0025 cm (0.0_1 in.) radial tip clearanue varia
tion. This variance was checked, and verified, utilizing feeler
gauge stock between the rotor tips and casing.

!"

J
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Facility

The- compressor test facility u_ad during this study-_s

designed to accommodate compressors ....._ flow rates to 4.54

kg/sec (1O lb/sec) and speeds t_ ?_ _Ja rpm. The compressor test
area, inlet air, and comp£es_or _:,:t vehicle weze isolated from

! the high temperatare drive cuzb_ ,,_ thereby eliminating undesir-
able thermal effects on perfor_::_:_, measurements.

i
Compressor inlet alr temperature was controlled using refrig-

eration units and/or evaporatxv_ coolers as required. An inlet
plenum was used to establish _niform compressor inlet test con-

ditions. A flow straightenin_ section in the plenum, forward of
the rotor inlet station, maintained a uniform flow field with a

I minimum of turbulence. An appropriate bellmouth was installed at
the plenum inlet to measure compressor airflow.

Flow rate was varied with _ set of motor driven throttle

valves located approximately 3. cm (12 in.) downstream of the i
o compressor exhaust diffuser, i

Test Procedure

Prior to aerodynamic evaluation of each stage configuration,

i a series of comprehensive checkouts were accomplished as follows:

(i) Establish the test vehicle mechanical integrity.

(21 Thoroughly check all instrumentation connections and

mechanical systems as required.

(_) Thoroughly check data reduction programs.

During mechanical integrity testing, the test vehicle was

accelerated to Ii0 percent of design equivalent speed with wide-
open throttle valves. The unit was then decelerated to design

equivalent speed and the throttle valves slowly closed, familiar-
izing test personnel with unit response to aerodynamic test !

| conditions. Upon reaching the surge limit, rotor tip clearance !

i was checked and the throttle valves opened. The unit was then ishut down and all instrumentaton connected. Pressure and vac-

uum leakage checks were conduct_ and adjustments made as re-

quired. Upon completion of all mechanical checks, the unit was
accelerated to design equivalent speed, throttled to near peak

efficiency, and several data scans recorded. Traversable wake

ra};es were immersed and again several data scans recorded. Fol-

lowing completion of these test scans, the unit was shut down and
a thorough check of the data reduction programs conducted. This

concluded the shakedown phase prior to each test series, i

!
i
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Th shall be emphasized that the stability limit for all

testing reported herein was determined by a system surge. This

. surge was readily identified by a series of loud repo2ts and an
abrupt discontinuity in mass flow rate and stage discharge pres-
sure. The unit was not instrumented to identify rotating stall

Test i: Smooth casin@ with close clearance. - The basic

compressor stage, with smooth casing a-_d no,uinal rotor running

tip cl_a_ance of 0.020 cm (0.008 in.), _as subjected to overall
and bl_Le element performance testing a_ four selected speeds

between 70 and ii0 percent of design equl,'alent speed. Discharge --_
valves were closed, throttling the stage at each speed to obtain

performance data over a range of pressure ratios from wi_e open
throttle to the surge limit. At each Cata point, a set of eight

data scans was recorded; one scan with the wake rakes fully re-

tracted into the casing, one scan for each radial posJ ion of
the traversable wake rakes, and one scan with the wake rakes

again retracted.

The rakes were not immersed at surge to preserve both the

rig and rakes. Overall performance and blade e] _uent data were • •
obtained for 24 data points within the operating range. Surge ++

flow rate was measured for each spe_d. Cuter wall h_undary layer

surveys were obtained at the rotor inlet, rotor exit, and stator
exit for ton selected data points.

Test 2: Casin@ treatment with close clearance. - The unit
remained on the test stand while the removable casing inserts

were interchanged. The stage was then subjected to overall and

blade element performance testing at three selected speeds between

70 and !00 percent of design equivalent speed. Discharge valves
were closed, throttling the stage at each selected speQd, to ob-

tain performance data over a range of pressure ratios and flow

rates from wide open throttle to the surge li_it. At each selec-

ted data point a set of eight data scans was reuorded in a manner
identical to that described for Test i. Overall performance and
blade element data were obtained for 18 data points within the

operating range. Outer wall boundary layer surveys were obtained
at the rotor inlet, rotor exit, and suator exit _or nine salected

data points.

Test 3_ Smooth casing with open clearance. - Prio_ to

inltlatlon of Test 3, a rear bearing faiiure Was incurred during

mechanical integrity testing. Rotor inspection, following this

failure, revealed severe damage in the rotor blade tip region. ;
A second rotor was fabricated in accordance with identical draw-

ings, thoroughly inspected, and substituted into the test pro-
gram. The second rotor was then machined so hhat the tip diemeter
waB 0.071 cm (0.028 in.) less than the original Test 1 and 2 rotor.

Following mechanical integrity testing, the compressor btag@ with +
smooth casing and an average rotor running tip clearanc£ of 0.056

4
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cm (0.022 in.) was subjected to overall and blade element

performance testing at three selected speeds between 70 and i00
percent of design equivalent speed. Discharge valves were closed,

throttling the stage at each selected speed to obtain performance
data over a range of pressure ratios and flow rates from wide

open throttle to surge limit. As before, at each selected data

point a set of eight data scans was recorded. Overall perfor-
mance and blade element data were obtained for 18 data points

within the operating range and the surge flow rate, was deter-

mined for each speed. Outer wall boundary layer surveys were
obtained at the rotor inlet, rotor exit and stator exit for nine "

selected data points.

Test 4: Casing treatment with o_en clearance. - The unit o
remained on the test stand while "the removable casing inserts

were interchanged. The stage was then subjected to overall and

blade element performance testing at three selected speeds be-

tween 70 and i00 percent design equivalent speed. Discharge
valves were closed, throttling the stage at each selected speed

to obtain performance data over a range of Pressure ratios and
• flow rates from wide open throttle to the surge limit. Again,

at each selected data point a set of eight data scans was re-

corded. Overall performance and blade element data were obtained

" for 17 data points within the operating range and the surge flow
rate was determined for each speed. Outer wall boundary layer

surveys were obtained at the rotor inlet, rotor exit, and stator
exit for six sexected data points.

Data Reduction Procedure

Rotor and stage overall performance. - A flow chart depict-

ing th6 various phases of data reduction is shown in Figure 28.

Prior to testing each day, and durin9 testing, an electronic

calibration was performed on all data sensors. This calibration

provided the basis for converting raw data to engineering units.

The test cell raw data was transmitted from a multiplexing

Unit, via cable, to a data acquisition computer and stored on

magnetic tape. Simultaneously, these data were selectively pro-
cessed by the computer and communicated to the cell site as per-

tinent overall performance parameters, and were displayed to

permit verification of recorded data.

Following completion of an individual test, a composite mag-

netic tape was generated. This tape contained the raw data, along
with calibration and bias parameters required to convert the raw

i data to engineering units.
!

j-
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Data was processed by first converting raw data to a form

the general data reduction program could accept. This was accom-

plished during Step 3 as illustrated in Figure 28. The general
data reduction program was then executed as indicated in Step 4.

The purpose of this program was to convert data to absolute

engineering units and compensate for any non-linearity in pres-
esure transducers.

Due to an observed discrepancy between wake rake temperature "

and downstream multi element fixed rakes, approval was obtained

for dual prccessing of performance data. Downstream fixed tem-

perature instrumentation was used in all calculations involving

stage and rotor performance, while the temperature wake _ake data
was used only to compute the efficiency profile across the stator

spacing.

By using the ll-element temperature rake and the ll-element

pressure rake, circ_ttferential variation in efficiency was ob-
tained at each radial immersion. The rotor total pressure analy-

sis assumed that rotor efficiency could be detected in this plot

of efficiency versus stator vane spacing. It was assumed that a

portion of this plot was a reflection of rotor efficiency unaf-
fected by stator wakes or secondary flows. The method for select-

ing the region to be used to compute rotor total pressure was

determined by selecting a minimum efficiency level below which
the data was not considered to be representative of rotor perfor-

mance. This process is illustrahed in Figure 29. As indicated

in Step 4 of Figure 28, the general data reduction program was

processed once for wake rake temperatures and once for fixed

downstream temperatures. Output from this process was combined

in Step 5 prior to fu£ther data analysis.

Overall performance was based on an averaging technique that;

(i) calculated pressure of an equivalent uniform flow field with
total momentum identical to the test field and, (2) calculated

temperature of an equivalent uniform flow field with total energy
the same as the test field. The latter is equivalent to a mass-

averaged temperature. Compressor inlet temperatures and pressures
were simple arithmetic averages since negligible radial and cir-

cumferential gradients were observed to exist at this location.

Appendix B presents a detailed mathematical summary of the

procedure used to momentum average the total pressure. This
procedure was repeated for each immersion and results were numer-
ically integrated radially to obtain the momentum averaged stag-

nation pressure of the equivalent uniform flow field for the
entire annulus area. The average compressor efficiency was ob- i

tained from enthalpy values of temperature and momentum averaged

pressure.

18
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! Blade element perfprmance. - Certain selected par_eters •
for each data point were preserved for processing by an axis_-

metric compressible flow analysis progr_. This progr_generated

velocity diagrams at the inlet and exit of each blade row using
the full radial equilibrium equation

The derivation and applicability of this equation closely

follows that of Reference 9. This analysis has been generalized,

however, to allow use along station lines that are o_er than

radial lines in the meridional (r-z) plane, as shown in Figure 30.

The basic equation that results from co_ining the moment_,
continuity, energy, and state equations is;

1 _P _ V82 [cos _-M_ cos (e-_) cos e] V2m [l-M2m cOs2 (u-_)]

p _n r (1-_) rc(1- _) cos (_-_)

" V 2 sin (u-_) cos (u-_) _[r tan (_-_)] sin e- sin (e-_) cos
m +

(1-M 2) r _n cos (_-_)

V2 sin (e-_) [(U - V 8) M 2 D(rV 8) _(tanSe) ]m m 1 DS cos e

(l_Mm2)r [ rV2 Dm Rg Dm r _8 ]
Vm D (rV 8)

_- (tan £ cos _ - tanS* sin £) Dm

Definition of symbols used in this equation is presented in
Appendix A.

As suggested by Smith in Reference 9, the computational form

of this equation can be obtained by expressing the entropy deriv-

ative, DS/Dm, in terms of the local static pressure and tempera-
ture and integrating the definition of entropy from S = O at

P = Po and T = To to give:

(p/po) (7-1)/7 then;

_ DS = Cp DQ
Dm Q Dm

L
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D(tanSe!
The circumferential derivative, was approximated

by assuming tanS_ to vary linearly in t_ circumferential direc-

tion and by introducing A. The final approximate form was ob-
tained as follows:

co3 _ _tanSe 1 D_
r 28 _ Dm

The last term on the right hand side of the radial equili-

brium equation represents blade force effect on the flow field, "
and was not used since all calculation stations lay just outside
the blades.

The data analysis process utilized the preceding radial

equilibrium equation together with continuity and energy consider-

ations to compute from the measured data, the vector diagram

details at each measuring station. To effect closure of this !

set of equations, values of streamline slope, curvature, dQ/dm,
and dA/dm were assumed constant at the values derived during the

reference design point computation. This simplifying assumption

is an obvious approximation devised to keep the extensive data

reduction process economically manageable.

Measured values of casing static pressure, stator exit

swirl angle, and radial distributions of total pressure and total

temperature were utilized along with the measured flow rate.

Through an iteratlve routine, the program computed at each station
an annulus blockage factor, to simultaneously satisfy these mea-
surements.

Since all measurements of total pressure and total tempera-

ture at the stage exit were made at fixed radial positions, namely

the design location of specific streamlines, it was necessary to
compute the total mass flew fraction contained between these fixed

measurement positions for each data point. At the rotor inlet,
rotor exit, and stator inlet stations, the radial locations of

thes& streamlines were then determined through a continuity com-

putation. Finally, the vector diagram and blade loading param-

eters were computed, at the blade and vane edges, for the flow

along these deduced streamlines.

2O
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RESULTS _D DISCUSSION

Test 1

Smooth Casing With Close Clearance

The test compressor was configured with a smooth (untreated)

casing over the rotor tips, and assembled so that the rotor tip

running clearance was approximately 0.020 cm (0.008 in.). This
clearance represents 0.78 percent of the mean rotor blade height.

The clearance was measured in four casing quadrants and was con- "-

tinuously monitored throughout all smooth casing tests. Rig

vibration problems were encountered during initial mechanical
shakedown. Altering the rear bearing from a resilient mount to

a hydraulically damped configuration eliminated this proDlem,
and rig operation to the required 86,000 rpm was successful.

Following instrumentation and leakage checks, baseline testing

(Test i) from 70 to ll0 percent of design speed was completed.

Overall performance. - Rotor and stage overall performance
• is shown in F_gures 31 and 32. For comparison, these data are

superimposed on the performance obtained from Reference 7. At

design speed, the rotor achieved a peak efficiency of 87.4 per-
cent at a pressure ratio of 1.87 but at a flow three percent less

than the design objective. A pressure ratio of 1.885 and an

efficiency of 86.6 percent were the design objectives. At the

design pressure ratio the rotor achieved design efficiency.

The pressure ratio produced by this rotor is at all speeds

less than the corresponding value measured for the original com-

pressor, and reported in Reference 7.

The maximum efficiency achieved by the stage at design speed
was 83.3 percent and occurred at a pressure ratio of 1.865,

whereas the design intent was 82.6 percent at a pressure ratio

of 1.835. The design efficiency was met, or exceeded, over the

stage pressure ratio range from approximately 1.78 to 1.91. A
pressure ratio of 1.925 was developed at surge, which compares to

a value of 1.96 obtained on the original compressor.

To permit a ready comparison of performance achieved in this

and succeeding tests, a reference operatin_ line was defined
based on performance measured during Test i. This refarence

operating line was definedas the locus of stage operating points

along a fixed throttle line that passed through design pressure

ratio at design speed. When compared to this reference operating

li,_e, the surge margin of this stage at design speed was 10.8

percent. Similarly, at ii0 percent, 90 percent, and 70 percent

speed the surge margin was 11.8 percent, 13.5 percent, and 18.1

percent, respectively. As can be seen in Figure 32, the demon-
strated surge margin compares favorably to that reported in
Reference 7.
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Blade element performance. - Blade element performance for
five radial positions (i0, 30, 50, 70, and 90 percent span from

the tip) is presented in Figures 33 through 37 for the rotor, and

Figures 38 through 42 for the stator, in terms of total loss
coefficient, diffusion factor, total loss parameter, and devia-

tion angle versus suction surface incidence angle. Design values
are indicated in these figures. At design pressure ratio, rotor

incidence angles are seen to be approximately one degree higher

than design. This results from the stage inability to obtain

design equivalent flow.

Rotor diffusion factors were close to design estimates

throughout the span with a peak value slightly in excess of 0.53
near the hub. This value compares to 0.6 reached on the Refer-

ence 7 rotor at 70 percent span from the tip. Loss coefficient

and loss parameter, although satisfying design levels near the

endwalls, were approximately two times the intent at mid-span.
Contrary to the higher than o_sign deviation angles obtained on

the original rotor, deviation angles indicated for this rotor

were generally lower hhan design estimates by approximately five

degrees near the tip and two degrees at _lid-span. Design levels •
were attained adjacent to the hub.

Stator incidence and deviation angles agreed well with de-

sign values. Vane diffusion factors at design speed did not ex-

ceed design levels; however, endwall values reached 0.54 at ll0

percent speed. The stator loss coefficient and loss parameter

were below design values near the tip and mid-span re_ions, but

exceeded design values near the hub.

Boundary layer data. - Surveys of total pressure versus
distance, measured from the outer wall, were obtained at the rotor

inlet, rotor exit, and stator exit boundary layer st%rvey locations

described in the Instrumentation Section of this report. Figures
43 through 45 show data taken at 70 percent speed, _igures 46

through 48 show data for 90 percent speed, and Figures 49 through

51 show profiles at design speed. Figures 52 through 54 present

data obtained at ll0 percent speed. Data is shown at wide open

throttle, peak efficiency, and near surge for all speeds exzept

70 percent where profiles were not obtained near surge. Peak

efficiency and wide open throttle were coincident at 70 percent
speed.

The momentum average rotor discharge and stage discharge

pressure ratios, calculated from the downstream wake rake instru-
mentation, are presented in Figures 50 and 51 for comparison to

the boundary layer data obtained at design speed near peak effi-

ciency and surge. As can be seen, reasonable agreement between
the two sets of data exists.
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Test 2

Casing Treatment Close Clearance

The test compressor rotor outer casing was changed from

solid to circumferentially grooved. This was facilitated by the

removable casing inserts that were changed without removing the

compressor from the test facility or uncoupling instrumentation.

Rotor tip-to-casing running clearances were maintained at 0_020
cm (0.008 in.).

Overall perfgrmance. - Rotor and stage overall performance i
obtained with casing treatment and close radial clearance (Test

2) are shown in Figures 55 and 56 for 70, 90, and i00 percent of

design speed. Superimposed on these figures is the performance

previously determined during baseline testing with smooth casing
(Test i). Comparison of data from the stage with treated casing

and that obtained with smooth casing show a two point improvement
in rotor efficiency at design speed, with lesser improvements at

part speed. The maximum stage efficiency at 90 and 100 percent

speed is essentially unchanged. The surge margin showed signifi-
cant increases at all speeds when casing treatment was added.

The stage surge margin increased to 12.8, 17.3, and 21.0 percent

at i00, 90, and 70 percent of design speed, respectively. There-
fore, these results substantiate the basic conclusions reached in

Reference 1 regarding surge margin improvement, with no penalty
in stage performance for this casing treatment configuration.

Blade element performance. - Rotor blade element performance

is presented in Figures 57 through 61 and stator blade element
performance is presented in Figures 62 through 66.

Rotor incidence, deviation angles, and diffusion factor were

similar to values obtained during Test i. Losses near the casing

remained at approximately the same level but, generally were re-

duced at all other positions. This was reflected in improved

rotor efficiency. However, stator losses were increased, thereby
resulting in similar stage efficiency for both tests. Stator

loading was essentially unchanged, but stator deviation angles

increased by approximately five degrees above the values from
Test i.

The above observations, re_arding rotor losses and stator

losses, are suggestive of an uncertainty in identifying a precise

allocation of losses between rotor and stator. Little, or no

judgement need be applied during computation of overall stage

pressure ratio and efficiency. However, selection of the wake

rake profile portion that is representative of rotor exit flow
conditions is a matter of judgement and numerical technique.
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The fact that the computed increase in rotor efficiency is

located primarily near the hub, and is combined with the fact

that stage performance is essentially unchanged, casts doubt on
the automated rotor efficiency computation accuracy.

In addition, the swirl angle measurement downstream of a

stator row, is subject to errors incurred because of total pres-

sure gradients that exist in the stator wake area. Shifts in

wake position, or character, are perhaps responsible for other-
wise inexplicable changes in measured swirl angle downstream of _.

stationary blade rows.

Boundary layer data. - Rotor inlet, rotor exit, and stator
exit boundary layer survey data were obtained at 70, 90, and i00

percent of design speed and are presented in Figures 67 through
75. These data were taken at wide open throttle, peak efficiency,

and near surge.

Local values of rotor discharge and stage discharge pres-
sure ratio, determined from the downstream wake rake instrumenta-

tion, are also shown in Figures 74 and 75 for comparison to the

boundary layer data obtained near peak efficiency and surge.

Observe that the casing boundary layer profile thickness at the

rotor exit has increased with casing treatment (compare Figures
50 and 74).

Test 3

Smooth Casing With Open Clearance

Various methods were considered to alter rotor tip clearance
in order to investigate this effect on performance. The method

used for this investigation consisted of machining rotor blade

tips to reduce rotor diameter. Axial roto_ displacement Cwithin

the sloping casing) appeared to offer certain economic advantages,
but was considered undesirable since instrumentation station

changes relative to the rotor would result.

Alternatively, the increased clearance could have been ob-

. tained by machining the casing locally to a larger diameter in

the rotor tip region. This would have resulted in flowpath con-
tour discontinuities and would require some new instrumentation.

Therefore, blade tips were machined to remove 0.036 cm (0.014 in.)

radially, which resulted in an average design speed running
clearance of 0.056 cm (0.022 in.), as measured in the smooth

casing. This represents an increase in clearance from 0.78 to

2.14 percent of the mean rotor blade span.

: 24

.!

1977004105-035



Overall performance. - Rotor and stage overall performance
for this configuration are presented in Figures 76 and 77. These

data are superimposed on performance obtained from Test 1 for

comparison. Maximum efficiency achieved by the rotor at design

speed was approximately three points below that obtained with
close clearance. A l%rge reduction in the maximum pressure Latio

achieved by the rotor was observed at design speed. In addition,

the rotor maximum flow capacity was reduced to about 91.2 percent
of design with this enlarged clearance. All of these performance

decrements are reduced in severity with decreasing speed; presum-

ably as a consequence of lower blade loadings associated with the

part speed operation.

Stage performance was greatly reduced at high speeds from

that of the baseline configuration. Pressure ratio at surge was
lower at all speeds with the greatest decay occurring at design

speed, where 1.745 was obtained compared to 1.925 at the smaller

clearance. A loss of 5.5 points in peak efficiency at design

speed was a result of this large running clearance. Stage surge

margins of only 5.4, 7.2, and ii.0 percent were obtained at 100,

. 90, and 70 percent of design speed, respectively, which are ap-
proximately 50 percent of values demonstrated during Test i.

Blade element _erformaqce. - Blade element performance param-
eter summary plots are presented in Figures 78 through 82 for the
rotor and in Figures 83 through 87 for the stator. As a result

of flow reduction, rotor incidence was approximately four or five

degrees higher than design. Rotor diffusion factors were well

below corresponding values from Test i, with maximum values of

about 0.4 occurring in the tip region. _or comparison maximum

loading with close clearance occurred in :he hub and exceeded
0.53. Higher than design losses were obtained in the rotor tip

region, but losses approximated design level_ near mid-span and

hub. Deviation angles near the rotor tip were approximately four

degrees below that obtained in Test i, but again approximated de-

sign levels at the hub.

Stator incidence angles were generally less than the corres-

ponding value during Test 1, particularly in proximity to the
hub. This reduced incidence resulted in a severe increase in

losses near the hub. Stator diffusion factors were reduced from

Test i.

Boundary layer data. - Measurements of total pressu_ versus
distance from outer wall were obtained at rotor inlet, rotor exit,

and stator exit survey locations as defined in the Instrumentation
Section of this report. Fi£_res 88 through 90 show data for 70

percent speed, Figures 91 through 93 for 90 percent speed, and
Figures 94 through 96 for design speed. Surveys are shown for

wide open throttle, peak efficiency, and near surge at all speeds.
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Local values of rotor discharge and stage discharge pressure
ratio determined from the downstream wake rake instrumentation

are also presented in Figures 95 and 96 for comparison to the

boundary layer data obtained at near peak efficiency and surge.
The two data sources show the same agreement typical of data

obtained during Tests 1 and 2. However, boundary layer data near

the casing presented in Figures 89, 92, and 95 indicate a substan-

tially different trend than previously obtained. Figure 97 pre-

sents a comparison between data from Tests 1 and 3 near peak

efficiency for design speed. This figure clearly shows the rotor

pressure ratio reduction due to the increase in rotor running
clearance.

As indicated by the blade element data (Figures 78 through

82), this rotor pressure ratio reduction is in part attributable

to increased losses near the rotor tip, but more generally is

the consequence of rotor blade unloading at all spanwise positions.

Test 4

Casing Treatment With Open Clearance

The smooth casing insert was removed, and the insert incor-

porating casing treatment was installed in the test compressor.
Rotor tip-to-casing running clearances were maintained at 0.056
cm (0.022 in.) as for Test 3.

Overall performance. - Rotor and stage overall performance
obtained with casing treatment, and open radial clearance, are

shown in Figures 98 and 99 for 70, 90, and i00 percent of design

equivalent speed. Superimposed on these figures for comparison
is the performance previously determined from both tests with

smooth casing; i.e., Test 1 with close running clearance, and
Test 3 with the same large clearance as Test 4.

A dramatic improvement in performance over that obtained
with the smooth casing at the same open cl_rance was seen at all

speeds tested. Approximately one-half of the performance lost as
a result of increased clearance was regained with casing treat-

ment. Rotor peak efficiency at 90 percent speed even exceeded

the level achieved during baseline testing. Rotor maximum pres-
sure ratio at design speed was increased from 1.81 with smooth

casing to approximately 1.8" with casing treatment. Maximu_n flow

at design speed was increased from 91.2 to 94.2 percent of design.
At design speed, the stage maximum efficiency was improved from

77.5 percent with smooth casing to almost 81 percent with treated
casing for this test. At 90 percent speed, the maximum stage

efficiency was improved to essentially the same level obtained
with close clearance. Stage surge margins at i00, 90, and 70
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percent of design speed were significantly increased to 8.7,
10 6, and 16 7 percent, respectively, from the previously obtained
values of 5.4, 7.2, and ii.0 percent with a smooth casing.

Blade element performance. - Blade element performance param- i
eter summary plots are presented in Figures 100 through 104 for
the rotor and Figures 105 through 109 for the stator, i

When compared to T_t 3 results, it is apparent the rotor i

was operating with a slightly reduced incidence because of in- !,

creased flow rate. Regardless of this, rotor blade loading
(D-factor) and deviation angle were slightly higher than during
Test 3. Rotor loss coefficients were generally reduced from the

levels observed for Test 3. Stator losses were substantially re-

duced in the hub region as a result of a less negative incidence.

Near the casing, stator losses were unchanged and insensitive to

incidence angle.

Boundary layer data. - As in all previous testing, measure-
ments of total pressure versus distance from outer wall were

. obtained at rotor inlet, rotor exit, and stator exit survey loca-

tions. However, during post-test data analysis, it was deter-

mined that total pressure data obtained at the rotor exit posi-
tion were in error. After extensive investigation, it was

determined that these data were irretrievably lost. As a result,

only the rotor inlet and stator exit survey data are shown.

Figures ii0 an6 iii show 70 percent speed datal Figures 112 and

113, 90 percent speed; and Figures 114 and 115, i00 percent speed.

Local values of stator discharge pressure ratios, determined

from the downstream wake rake instrumentation, are presented in

Figure 115 for comparison to the boundary layer data obtained

near peak efficiency and surge• The data obtained at stage dis-

charge shows the same reasonable agreement obtained during pre-
vious tests.

i
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SUMMARY OF RESULTS

As described in detail under Data Reduction Procedure, vector
diagrams at the inlet and exit to each blade row were determined
through an extensive computational procedure utilizing the mea-
sured flow conditions and the fluid dynamic equations. One param-
eter, necessarily determined during this computation to model the
tested flow condition details, was the local annulus area block-
age factor (_). Historically, this parameter has been used to !
represent, in an axisymmetr±c flow analysis, the effeats of end-
wall boundary layer blockage as well as circumferential (blade-
to-blade) non-uniformities. Some significant results of this
present test series can be more clearly visualized by observing
the deduced changes in rotor exit blockage factor as presented
in Figure 116. As shown, the rotor exit blockage factor has been i
normalized by the value at rotor inlet, because, it is the area-
ratio across a rotor that is most significant in determinin_
operation at a given flow-rate and rotating speed. The data in
Figure 116 must be interpreted in recognition of assumptions in-
herent in the data analysis procedure. However, significant var-
iations are observed that serve to clarify some performance
changes between the four tests.

The addition of casing treatment to the close-clearance base-
line configuration appears to have c&used a 8light decrease in
blockage factor (more blockage). However, according to the data,
there was a slight decrease in rotor deviation angle, particularly
near the casing to the effect that overall stage p6rformance was
relatively unchanged.

Performance of the open-clearance configuration (Test 3), is
dominated by a very large reduction in blockage factor at the
rrtor trailing edge. Th_s reduction in blockage factor can be
interpreted as an axi_y_etrJc approximation to the complex three-
dimensional flow proces_ in the rotor tip region. As rotor run-
ning clearance increases, the tip leakage increases, giving rise
to an increase in the rotor tip vortex magnitude and an associated
increase in loss coefficient in the rotor tip region. When ob-
served in the stationary coordinate system, these effeuts of in-
Creased clearance appear as reduced total pressure level and re-
duced blockage factor. The resultant effect on rotor operauion
is a general flow shift away from the casing and an increase of
axial velocity, primarily near the hub and mid-span. This Is evi-
dent in reduced rotor loading (lower D-factor) and higher axial
velocity into the stator.

It should be noted that the computed blockage factor was
dist:ibuted uniformly across the annulus (see Appendix B for de-
tailed discussion). A more complex modeling that r_ognised var-
iations in blockage as a function of radial position may have pro-
vi£ d different vector diagram details.
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" The addition of circumferential grooves to the open-
clearance configuration resulted i_ a blockage factor increase

i . and, therefore, a significant recovery of rotor pressure rise
and stage flow capacity.

Figure 117 illustrates blockage vari=tion effects on axial
velocity at the rotor discharge. Shown in this figure for com-

y paris)n, is the computed axial velocity profile for the four
tests near peak rotor efficiency at design speed. The comparison

! of Test 1 data and Reference 7 data illustrates the agreement
i between these velocity profiles. _--

i The _nnulus blockage factor at the stator inlet, illustrated
in Figure 118, showed surprisingly small changes between the four _
tests when compared to results obtained at the rotor exit. At
the higher speeds, trends are s_milar but the magnitude of changes
are a small fraction of changes shown in Figure 116. At 70 per-
cent speed, no significant change is seen in blockage level be-
tween the various rotor configurations. This observation is con-
sistent with the comparatively slight variations in stage

. performance at 70 percent speed.

Extreme variations of rotor exit blockage and relatively
small variations of stator inlet blocksge are difficult to accept.
H_wever, since the rotor exit blockage factor decreases (more
distortion) with increasing flow and reduced rotor loadings, it
would appear that the major contribution to area blockage at the
rotor exit is related to some shock induced, or at least some
_ch number dependent, process rather than being controlled by
increasing diffusion on the endwalls or blade surfa=es in the
usual sense. It is not known whether this type of blookage might
achieve a comparatively mixed state within the shor_ axial dis-
tance between rotor exit and stator inlet.

Alternatively, it should be r_cognized that _ome approximation
in the data interpretation or the axisymmetric modeling may have
induced an unfavorable comparison.

Shown in Figure 119 are the radial distributions of stator
•incidence angle obtained f_om data points near peak rotor effi-
ciency at design speed. The effect of variations in blockage
factor on stator incidence is evident. Note that there are signi-
ficant flow-rate diffe:ences between the selected data points.

Data in Figure 120 shows a large variation in stator loss co-
efficient between the same operating points as above. These stator
losses are seen to increase rapidly at the low incidance angles.
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The preceding data presentations and accompanying discussions

clearly show that performance of this small transonic com[ressor

was critlcally dependent on the effective ann,_lus area ava31able
for flow at the rotor exi_ and statler inlet.

Flow deficiency of the close-clearance baseline configuration
of Test 1 can be attributed, to a large degree, to a lower block-

age factor than design. ?;he&her this low blockage factor is a

result of low rotor aspect-ratio or some other design considera-
tion, remains to be determined. However, result_ of Test i

clearly show _hat at design speed, rotor _osses are li,_ting the "
perforn_nca attainable on the speed line low fJ, " side, and

stator losses are limiting the maximum flow capacity" and perfor-
mance on the speed line high flow end.

Since the rotor exit blockage factor and stator incidence

are reduced, while the rotor incidence is increased with large
clearan=_s (Test 3), this mismatch between rotor and stator is

amplified. Performance benefits realized by addition of casing

treatment to the open-clearance configuration (Test 4), are

largely the consequence of improved matching between the rotor
and stator.

It appears clear that the basic stage performance could be
improved by the incorpgration of a design modification to increase

the rouof exit area by an amount devised to optimize the match

between the rotor and stator low loss operating ranges. Such a

modification should also avoid some of the precipitous performance
reduction associated with increased tip clearance, as observed in

the present tcsL series.
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Figure 2. -view of rotor_ looking aft,
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DATA

Figure 3. -Stator vane optical inspection near mid-span.
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Figure 4, -View of finished stator assembly, looking aft.
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Figure 19. -Grooved casing insert.
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-_. , (0.020 in.)

0.124 am
(0.049 in. )

TF_MPERATURE RAKE

Figure 23. -Stage discharge radial rakes.
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_9 Figure 24. -Traversable temperature wake rake.
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Figure 25. -Traversable pressure wake rake.
Mr-55]0t
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_._$3oo Figure 26. -Cobra probe.
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Figure 27. -Rotor inlet and exit boundary layer survey probes.
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FINAL REPORTPLOTS

END

Figure 28. -Data reduction flow chart.
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Figure 30..Meridional view with projection of station line.
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Figure 33. -Rotor blade element performance,
10 percent span from tip, Test 1,
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Figure 34. -Rotor blade element performance,

30 l)ercent span from tip, Test 1,
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. Figure 36, -Rotor blade element performance,
70 percent span from tip, Test i°
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Figure 44. -Rotor exit outerwail be lndary layer total pressure

profile, 70 percent design speed, Test I.
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Figure 45. -Stator exit outerwall boundary layer total pressure

profile, 70 percent design speed, Test i.
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• Figure 46. -Rotor inlet outerwall boundary layer tota_ pressure

profile, 90 percent design speed, Test I.
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Figure 47. -Rotor exit outerwall bour,dary layer total pressure

profile, 90 percent design speed, Test i.
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Figure 48_ -Stator exit outerwall boundary layer total pressure
profile, 90 percent design speed, Test I.
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Figure 49. -Rotor inlet outerwall boundary layer total pressure
profile, i00 percent design speed, Test I.
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Figure 50. Rotor exit outerwall boundary layer total pressure
profile 00 percent design speed, Test I.
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:- Figure 51. -Stator exit outerwall boundary layer total pressure

profile, 100 percent design speed, Test 1.
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Figure 52. -Rotor inlet outerwall boundary layer total pressure

profile, ii0 percent design speed Test 1.
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Figure 53, -Rotor exit outerwall boundary layer total pressure
profile, ii0 percent design speed, Test i,
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: Figure 54. -Stator exit outerwall boundary layer total pressure

• profile, ii0 percent design speed, Test i.
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_'igure 57. -Rotor blade element performance_

i i0 percent span from tip, Test 2. 87
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Figure 59, -Rotor blade element performance,
J
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70 percent span from tip, Test 2.
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Figure 64. -Stator blade element performance, ' I_ 50 percent span from tip, Test 2.

94

1977004105-105



!

d

8

: I
+ +

Z
CD

-=i

8

A_ _ OOe (9

° I• -- + + + +

$_MBut _ sPo

4- A 90.

_ + I

_) DESION
i=

,,, l

+, + + +
/

•-'20,00 -_@J;O -L2JlO" .41.00. -4..00 O_lO ¢.0_ B.O0 12Jl_
,soc_ a_EE _NCr_NCE

Figure 65. -Stator blade element performance,
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' Figure 67° -Rotor inlet outerwall boundary layer total pressure

; profile, 70 percent design speed, Test 2,
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Figure 68. -Rotor exit outerwall boundary layer total pressure 1
profile, 70 percent design speed, Test 2. !
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Figure 69. --Stator e_.t out_*:._ll boundary layer total pressure

, profile, 70 percent design speed, Test 2. _
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Figure 70. -Rotor inlet outerwall boundary layer total pressure :
profile, 90 percent design speed, Test 2. i
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Figure 72. -Stator e_it outerwall boundary layer total pressure

profile, 90 percent design speed, Test 2,
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Figure 73. 1Rotor inlet outerwall boundary layer total pressure

profile, i00 percent design speed, Test 2.

103

I

1977004105-114



/

I

Figure 74. -Rotor exit outerwall boundary layer total pressure
profile, i00 percent design speed, Test 2. !
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Figure 81. -ROtor blade element performance,
70 percent span _'rom tip, Test 3o
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Figure 86. -Stator blade element performance, !
70 percent span from tip, Test 3.
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Figure 88. -Rotor inlet outerwall boundary layer total pressure
profile, 70 percent design speed, Test 3.
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Figure 89. -Rotor exit outerwall boundary layer total pressure

profile, 70 percent design speed, Test 3.
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Figure 90. -Stator exit outerwall boundary layer total pressure

profile, 70 percent design speed, Test 3.
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Figure 91. -Rotor inlet outerwall boundary layer total pressure i

profile, 90 percent design speed, Test 3. i
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Figure 92, -Rotor exit outerwall boundary layer total pressure

profil_, 90 percent design speed, Test 3,
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Figure 93, -Stator exit outerwall boundary layer total pressure
profile, 90 percent design speed, Test 3,
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F._gure96. -Stator exit outerwall boundary layer total _ressure
profile, i00 percent design speed, Test 3.
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Figure ii0o -Rotor inlet outerwall boundary layer total pressure

profile_ 70 percent design speed, Test 4°
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Figure iii. -Stator exit outerwall boundary layer total pressure
profile, 70 pe_ent design speed, Test 4.
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Figure 112. -Rotor inlet outerwall boundary layer total pressure
profile, 90 percent design speed, Test 4.
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Figure 113. -Stator exit outerwall boundary layer total pressure

profile, 90 percent design speed, Test 4.
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Figure 114. -Rotor inlet outerwall boundary layer total pressure

profile, i00 percent design speed, Test 4.
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Figure 115. -Stator exit outerwall boundary layer total pressure

profile, I00 percent design speed, Test 4.
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TEST NO. SYMBOL

1 OPEN O CLOSE CLEARANCE UNTREATED

2 DARKENED • CLOSE CLEARANCE WITH TREATMENT

3 LEFT DARK _ OPEN CLEARANCE UNTREATED

: 4 TOP DARK _ OPEN CLEARANCE WITH TREATMENT

DESIGN

1.00 ,. ,
9o_ NI/_

i

" I • 100% N//_
.< 0.95

oo.,o ,,,H O110% N/V[

L) _L_,_ h_.,

O_ O.80 %m w _---e
m .A

_. /,_-_ _ -,_0 _ ,,.,m
0.75 / - _

0.70
55 60 65 70 75 80 85 90 95 i00 105

PERCENT DESIGN EQUIVALENT FLOW

• Figure 116, -Rotor blockage.

l
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SYMBOL TEST % W/_0/_ q___R _ SCAN

O 1 96.3 86.4 0.889 2

A 2 96.0 89.0 0.832 6

O 3 89.4 84.6 0.733 4

[3 4 93.5 87.6 0.783 4
TIP 0

10

REFERENCE 7

20

30

40

O

50 loo_ N/_ ) _ _T
m NEAR PEAK EFFICIENCY |

l
60

N

70 - _

/
90 -

HUB i00

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Vz2/UTI P

Figure 117. -Rotor discharge axial velocity, i00 percent
• design speed near peak efficiency,
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TEST

1 OPEN O CLOSE CLEARANCE UNTREATED

: 2 DARKENED • CLOSE CLEARANCE WITH TREATMENT

3 LEFT DARK _) OPEN CLERANCE UNTREATED WITH TREATMENT

4 TOP DARK _ OPEN CLEARANCE WITH TREATMENT
eD_

: • DESIGN

-_ 1.00

90% N//O.-. • i loo%Nii-_
_ 0.95 70% N//O . llll •
.. & ! -- 110% //0-

: _ o
0.90 _i _ _ __ __ ,0

• • @0 I _l_).

O _ _ &
m

0.85

Z
H

0.80 .....
0

o_ 0.75

0.70
55 60 65 70 75 80 85 90 95 100 105

PERCENT DESIGN EQUIVALENT FLOW

Figure 118, -Stato_ inlet blockage.
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z
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i
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90

HUB i00
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STATOR INCIDENCE, Z
SS

• Figure I19. -Stator incidence, 10f, 2ercent design speed
near peak efficiency.
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TIP 0

",\]10

20

30 •

m O 1 96 3 0 905 2H " •

4o _ 2 96.0 0.882 6_

[3 4 93.5 0.883 4

<
m 50

iI_0% N/V_

Z _ NEAR PEAK EFFICIENCY

\

" 70

90

_-- DESIGN __

HuB1oo, _--_"-- I
0 0o05 0. i0 0,15 0.20 0,25 0.30

STATOR LOSS COEFFICIENT,

120, -Stator loss coefficient, i00 percent designFigure
;

speed near peak efficiency,
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APPENDIX A

DEFINITION OF SYMBOLS AND PERFORMANCE PARAMETERS

A area, m 2 (ft 2)

c chord length, cm (in.)

C specific heat at constant pressure, J/kg-°K (Btu/ib -°R)
p m

d diameter, cm (in.)

D diffusion factor

2 2

g gravitational constant, 9.8066 kg-m/N-sec (32.174 ibm-ft/ibf-sec )

H enthalpy, J/kg-°K (Btu/ib-°R)

" i incidence angle, angle between inlet air direction and blade

s leading edge, deg

J mechanical equivalent of heat, 0.1019 m-kg/J (778.161 ft-lbf/Btu)

• m distance along meridional projection of streamline, cm (in.)

ms increment of mass flow, kg/sec (ibm/sec)

M Mach number

N rotor speed, rpm

n distance along meridional projection of station line, cm (in.)

P total pressure, N/cm 2 (psia)

p static pressure, N/cm 2 (psia)

Q entropy function, e-_S/Cp

r radius, cm (in.)

Rg gas constant for air, 287.00 J/kg-°K (53.342 ft-lbf/lbm-°R)

rc streamline curvature in meridional projection, cm -I (in. -I)

S entropy, J/kg-°K (B_u/ib-°R)

s blade circumferential spacing, cm (in.)
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t blade maximum thickness, cm (in.)

T total temperature, °K (°R)

oK ot static temperature, (R)

t/c thickness-to-chord ratio

U rotor speed, m/sec (ft/sec) m-

Y velocity, m/sec (ft/sec)

streamline slope in meridional projection, deg

8 tan -I VG/V m, de9

8* tan -i Ve/Vz, deg

Se tan -_ I(VS/Vz + [(tan E) (tan 7)]}, deg
t

7 ratio of specific heats

¥o blade-chord angle (from axial direction), deg

ratio of inlet total pressure to NASA standard sea level

pressure of 10.1325 N/cm 2 (14.6959 psia)

_o deviation angle (based on mean camber line), deg

/, delta, finite difference

angle between the radial direction and the stream surface in

the t = c°nstan; plane Itan-l-6(r_)6r t = c°nstant)

plane and axial direction, deg

n efficiency

e ratio of inlet to_al temperature to NASA standard sea level

temperature of 288.16°K (518.69"R), or polar coordinate, radlan

< blade metal angle from merilional direction

fraction of annulus available for flow

angle between r_dial direction and meridional projection of

station line, deg
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_S axial momentum, kg-m/sec 2 (!b-ft/sec 2)

blade camber angle, <le - <te' deg

_S tangential momentum, kg-m/sec 2 (ib-ft/sec 2)

I

loss coefficient
mb_

cos 8/2o loss parameter

p fluid density, kg/m 3 (lb/ft 3)

a solidity c/s

101-225 pressure instrumentation identification numbers

• Subscripts :

• 0 compressor inlet (bellmouth)

0.9 upstream of rotor inlet

1 rotor inlet

2 rotor exit

3 stator inlet

4 stator exit

5 stage discharge

ad adiabatic

E equivalent parameter

i relating to immersion

id isentropic condition !

m meridional component or mean cen_ber

p polytropic

le leading edge I
I
T

i '
1 t

I

• 1 153 '
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/

te trailing edge

s static condition

ss suction surface

z or X a-_ial component

e tangential component

Superscripts:

' relative to rotor blade

-- mass or momentum average value

NOTE

All conversior factors based on NASA SP7012 Revised.

|

i
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r_

i
J

! Pressure Ratio:

i Rotor: _ Stage:

i Corrected Flow:

,I w/_
_f "T-
1

Equivalent Rotor Speed:

.I

-_ NI/_
[

Adiabatic Efficiency:#

- H1 _ H1H2id H5i d
Rotor: had = H2 - H1 Stage: had =

H5 - H1

Incidence Angle:

!

Rotor: im = 81 - <le Stator: im = 82 - Kle

!

iss = 81 " _ss iss = 82 - <ss

I

Diffusion Factor:

V 2 d2 ve2 - d I Vel
Rotor: D = 1 - --7 +

V 1 (dI + d 2) VlO

• 155 <
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V 4 d 3 V83 - d4 V84
Stator: D = 1 - -- +

V 3 (d3 + d 4) V3o

Deviation Angle :

!

Rotor: 6° = 82 - Kte Stator: 6 ° = 84 - Kt_

LOSS Coefficient:

J_
! !

' P2id - P2
Rotor: _ = ,

P1 - Pl

where :

, ,2 , , U22 - U12

31--tCl+ y___/lM1_,32_-T1+ _ gRg

_Iy-i
! ! •

\%1
_3._

is found from p/P'= /ll + !i! M '2_\

l-y
p'

Where the relative gach numbers are input from the velocity diagram

program.

: Stator: _ .: P31 - P4

P31 - P3

¢

where :

J

P31 = the wa_e rake freestream total pressure

K
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Loss parameter :

I

rotor _ cos 82
2o

stator _ cos B4
2o

Polytropic efficiency:

P2
y-__!in

"_ Y PO

rotor np = T2

in T_0

• y-___lin P4

stator np = t4

in _3

SM - surge margin:

SM = -- ;t P5 - 1 x i00, percent

W_"O at reference
surge _0 point N//O = constant

: For absolute values of surge margin, the reference point at any spee_

is defined as the intersection of that particular speed line with the

constant throttle line passing through the design pressure ratio at

design speed for the Test 1 configuration.

'L
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APPENDIX B

MOMENTUM AVERAGING PROCEDURE

By considering the equations of state, energy, continuity and

momentum a set of equivalent parameters can be evaluated which can be

considered representative of a uniform flow field with the same momentum

and mass flow as the test field. The equivalent parameters of static

pressure PE, stagnation temperature TE, swirl angle BE , and stagnation

pressure PB' can be computed from the following procedure utilizlng

the listed assumptions.

• _s = cosB fevda (i).

This equation can be numerically evaluated once the equation of state

has been employed and equation (i) is rewritten in the following form

imax ,--- (2)

1

using the energy equation

T'.

t=l +y_l M2 (3)
2

yields the relation which can be evaluated from the measured parameters

imax

_S = c°s_ r_rPs_i_=' i M-i_ (i + Y-IM2)I/2T _8i (4)

J

I
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The st._ic pressure PS is assumed to be a function of radius only

and the value of the ratio of specific heats, 7, is based on the arith-

metic average of the stagnation temperature at each immersion after

being corrected for Mach number effects. The incremental height _r

is determined by the hub and tip flowpath radii and the arithmetic

average radius between probe immersions. The Mac_ number is computed

from the local static and total pressure and, hence, is a function of

radius and circvmferential location. The circumferential increment A8

is the spacing between measuring elements on the wake rake and progresses

until one blade pitch at a given immersion is traversed.

The continuity equation in equivalent form is written

(5)
roSE =PEVECOS_E arc

or in terms of the axial Mach number

R_gtE (6)
= P Y

Using the same technique, the axial and tangential momentum equa-

tions can be written. The axial momentum is

@S = PS A + cOs2 _ / pv2dA (7)
g

or in the form used for numerical evaluation.

imax (8)

= Ps rdr .2 (i + cos2_TMi2)A8 i
I=I

i
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t
The axial momentum in terms of equivalent parameters is

'_SE = (PE + c°s2flEPEVE 2)arc (9)

g

or in terms of Mach number function

_SB = PE(I + TMx2E)arc (10)

In a similar manner the tangential momentum can be written

_S = sine cos_ fpV2dA (ii)
g

or in the form for numerical ev&luation

f

imax

_S = sin E cos_ 7Psr&r_Mi2_8 i (12)

i=l

The tangential momentum in terms of equivalent parameters is

_SE = sinflEC°SflEPEVE 2 arc (13)

g

or in terms of the Mach number funrtions with positive _in the

direction of rotor rotation

; _SE = PETMxEM8E azc (14)

, If the equivalent functions are set identically equal to the

! integral values then there exists sufficient information _o solve for

the Mach numbers,

• - (15)
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_S 5 _SE (16)

_S - _SE

(17)

Combining equations (6) and (10) yields

_S___E te MXE (18)

*SE (l �y_x_5

Using the energy equation

TE _ 7_i 2
tE i + -- (MxE 2 + M@E ) (19)

to eliminate tE from equation (18) yields

-"x_ __(MXE,MOE2)I (20)
(i+ _'_E_')

where the equivalent stagnation temperature TE is evaluated at each

radial immersion by converting the local circumferenctial value of

stagnation temperature to an enthalpy value utilizing a polynomial

curve fit of Keenan & Kay's Gas tables for the properties of air at

low pressure. These local values of enthalpy are then mass averaged

to obtain an equivalent stagnation enthalpy.

P

HE = HH_ (21)
&J

° The value of HE is used to compute TE from a polynomial of temperature

versus enthalpy.
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By combining the axial and tangential momentum equations (I0) and

(14) two equations with two unknowns can be generated.

_SE _ ZMxEMSE

@SE (I +TMxE z) (22)

Equations (20) and (22) can be solved for MXE as follows. Letting

A _-_EVYg (23)

and

(i + YMxE2)_SE
_o_.= (24)

@SE Y MXE

' then

Z-I MXE4 2 2
.7-i _SE A 2__ .+ MXE + -

2 (i + YMxE2) 2 (I + ZMxE2) 2 2 @..272 = 0 (25)SE

with

then

A2Z2MxE 4 _ y__3Mx_4_ 8y2Mx_4 �2A_E2_Mx_2 2BYMX_2+A2 - B--0 (27)

Letting

2

X m _E then _8 }
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X 2 + (2A2Z _ 2BZ-I) X + (A2 - B) = 0 (29)
(A2Z 2 _ ()'-___!l)_BZ 2 (A2),2 (F-I) BZ2)

2 - --2----

which is in the form of a: quadratic equation with the solution

-b + (b2 - 4ac) I/2
X = 2a (30)

where

a = 1 (31)

2A2Z - 2BZ - 1

b = A2y 2 _ (Z-l) - BY 2
(32)

A 2 - B
= (33)

c A2Z 2 - (Y-l) - BY 2
2

Once the equivalent axial Mach number, M_E, is known, then from

equation (10), the equivalent static pressure, PE' can be obtained.

The tangential Mach number, MSE, can then be solved from equation

(14). The equivalent swirl angle, BE, is

tan-i[M°E)

and the momentum average stagnation pressure is

PE = PE I1 + z_--!CMx_2+ Me_2)]_I_I C3s)

This process is repeated until equivalent parameters are deter-

mined at each immersion.
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